On partitions of a partially ordered set
نویسندگان
چکیده
منابع مشابه
Partitions of a Finite Partially Ordered Set
In this paper, we investigate the notion of partition of a finite partially ordered set (poset, for short). We will define three different notions of partition of a poset, namely, monotone, regular, and open partition. For each of these notions we will find three equivalent definitions, that will be shown to be equivalent. We start by defining partitions of a poset in terms of fibres of some su...
متن کاملSampling of Multiple Variables Based on Partially Ordered Set Theory
We introduce a new method for ranked set sampling with multiple criteria. The method relaxes the restriction of selecting just one individual variable from each ranked set. Under the new method for ranking, units are ranked in sets based on linear extensions in partially order set theory with considering all variables simultaneously. Results willbe evaluated by a relatively extensive simulation...
متن کاملSearching On Division Partially Ordered Set
Let P = {pi|i = 1, 2, . . . , n} be a set of n elements with partial order defined as follows: pi ≤ pj if and only if i divides j. Assume real numbers are assigned to all members of P in an order preserving manner, this results in a set A of n real numbers. Given an unknown x ∈ R, we want to determine whether x is belong to A or not, by comparing x with as few elements of A as possible. We pres...
متن کاملChapter 4 Partitions of a Finite Partially Ordered Set Contributed Chapter
In this paper, we investigate the notion of partition of a finite partially ordered set (poset, for short). We will define three different notions of partition of a poset, namely, monotone, regular, and open partition. For each of these notions we will find three equivalent definitions, that will be shown to be equivalent. We start by defining partitions of a poset in terms of fibres of some su...
متن کاملPattern Avoidance in Ordered Set Partitions
In this paper we consider the enumeration of ordered set partitions avoiding a permutation pattern of length 2 or 3. We provide an exact enumeration for certain special cases, and a recursive technique to exactly enumerate the appropriate set partitions in general. We also give some asymptotic results for the growth rates of the number of ordered set partitions avoiding a single pattern; includ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 1977
ISSN: 0095-8956
DOI: 10.1016/0095-8956(77)90052-1